Name variables and functions descriptively. ~ , Use Clear Naming

Follow consistent naming rules (e.g., camelCase, snake_case).

Conventions

Indent code blocks

Use spaces or tabs uniformly across the codebase.

consistently. O[Write Readable Code
© Format Code Properly

Divide large functions into smaller, reusable ones.

Ensure each function performs a single task.

© Break Down Functions

Group related functions and classes into modules.

o{ Write Modular Code

Use namespaces to avoid naming conflicts.

© Organize Code into Modules

Explain complex logic and algorithms.
Describe the purpose of specific code sections.
Create README files for project overviews.

Document APIs and public functions.

Adhere to language-specific style
guides (e.g., PEP 8 for Python).

Add Inline Comments

- Comment and Document

Write Documentation

Use linters to enforce style rules.

© Follow Style Guides

Use automated tools to format code (e.g, Prettier, Black). Standardize Code

Maintain

Agree on a common style guide within the team.

Formatting Consistent Style

Profile code to find performance issues.

Focus on optimizing critical sections first.

© Identify Bottlenecks

Choose appropriate data structures.

Implement algorithms with optimal
time and space complexity.

Optimize Code Performance
© Use Efficient Algorithms

Best

Topic.Ninja

Coding

Practices

’

Test individual functions and methods for expected behavior.
Write Unit Tests ©

Use testing frameworks (e.g., JUnit, pytest).

Test Code Thoroughly]O

Test the interaction between different modules.

Conduct Integration Tests ©

Verify the overall system functionality.

Save changes in small, logical increments.
Commit Frequently -

Write descriptive commit messages.

Use Version Control = Create branches for new features and bug fixes.

Branch Strategically
Use pull requests for code reviews and merging.

Simplify complex code and remove redundancies.
Improve Code Structure O

Enhance readability and maintainability.

Refactor Code Regularly]O

Identify and eliminate unused variables and functions.

Remove Dead Code ©

Clean up commented-out code sections.

Review peers' code for quality and standards compliance.
Conduct Code Reviews O

Provide constructive feedback and suggestions.

Collaborate Effectively [o;

Hold regular team meetings to discuss code improvements.

Share Knowledge O

Document best practices and common solutions.

Use try-catch blocks to manage exceptions.
Implement Error Handling ©

.

Provide meaningful error messages.

Handle Errors Gracefully]o

Check user inputs for validity and constraints.

Validate Inputs ©

Sanitize data to prevent security vulnerabilities.

https://www.topic.ninja/

